Graphene oxide oxidizes stannous ions to synthesize tin sulfide–graphene nanocomposites with small crystal size for high performance lithium ion batteries†
نویسندگان
چکیده
This study reports a novel strategy of preparing graphene composites by employing graphene oxide as precursor and oxidizer. It is demonstrated that graphene oxide can oxidize stannous ions to form SnS2 and is simultaneously reduced to graphene, directly resulting in the formation of SnSx–graphene (1 < x < 2) nanocomposites. The particle size of SnSx in the nanocomposites is tailored to be about 5 nm, which is much smaller than that obtained in a previous study. As anodic materials for lithium ion batteries, SnSx–graphene nanocomposites retain a discharge capacity of 860 mA h g 1 after 150 cycles at a charge–discharge rate of 0.2 C, higher than the theoretical capacities of SnS2 (645 mA h g ) and SnS (782 mA h g ) based on the traditional mechanism. A possible new mechanism, that Li2S arising from tin sulfide in the first discharge cycle could be reversibly decomposed at a low potential to storage lithium, is proposed based on experimental results to explain the excellent properties of SnSx–graphene nanocomposites.
منابع مشابه
Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries.
A SnO2/graphene nanocomposite was prepared via a facile solvothermal process using stannous octoate as a Sn source. The as-prepared SnO2/graphene nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, a long cycle life and a good rate capability when used as an anode material for lithium-ion batteries.
متن کاملImproved electrochemical performance of tin-sulfide anodes for sodium-ion batteries
Due to their highly reversible capacity, tin-sulfide-basedmaterials have gained attention as potential anodes for sodium-ion and lithium-ion batteries. Nevertheless, the performance of tin sulfide anodes is much lower than that of tin oxide anodes. The aim of the present investigation is to improve the electrochemical performances of SnS anodes for sodium-ion batteries using conventional organi...
متن کاملGraphene-based nanocomposite anodes for lithium-ion batteries.
Graphene-based nanocomposites have been demonstrated to be promising high-capacity anodes for lithium ion batteries to satisfy the ever-growing demands for higher capacity, longer cycle life and better high-rate performance. Synergetic effects between graphene and the introduced second-phase component are generally observed. In this feature review article, we will focus on the recent work on fo...
متن کاملSynergistic effect of graphene and polypyrrole to enhance the SnO2 anode performance in lithium-ion batteries
In this work, a synergistic effect of reduced graphene oxide (rGO) and polypyrrole (PPy) was studied in terms of their promotional role to enhance the capacity and cyclic stability of hollow SnO2 anodes in lithium-ion batteries. The core–shell structured hollow SnO2/rGO/PPy nanocomposites were synthesized using a hydrothermal method followed by an in situ chemical-polymerization route. Substant...
متن کاملFabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries
Tin-oxide and graphene (TG) composites were fabricated using the Electrostatic Spray Deposition (ESD) technique, and tested as anode materials for Li-ion batteries. The electrochemical performance of the as-deposited TG composites were compared to heat-treated TG composites along with pure tin-oxide films. The heat-treated composites exhibited superior specific capacity and energy density than ...
متن کامل